Date

4.3 – Triangle Congruence by SSS and SAS

Draw $\triangle MGT$. Use the triangle to answer the questions below.

- 1) What angle is included between \overline{GM} and \overline{MT} ?
- 2) Which sides include $\angle T$?
- 3) What angle is included between \overline{GT} and \overline{MG} ?

Would you use SSS or SAS to prove the triangles congruent? If there is not enough information to prove the triangles congruent by SSS or SAS, write *not enough information*.

Use the given information to <u>name</u> two congruent triangles. <u>Explain</u> your reasoning. (What's congruent or not...etc.)

15) Draw a Diagram A student draws $\triangle ABC$ and $\triangle QRS$. The following sides and angles are congruent: $\overline{AC} \cong \overline{QS}$ $\overline{AB} \cong \overline{QR}$ $\angle B \cong \angle R$ Based on this, can the student use either SSS or SAS to prove that $\triangle ABC \cong \triangle QRS$? If the answer is no, explain what additional information the student needs. Use a sketch to help explain your answer.

16) Use the information given in the figure to find the values of *x* and *y*.

17) Use the information to complete the following flow chart proof.

18) Use the information to complete the following flow chart proof.

Given: $\overline{AB} \cong \overline{CD}$; $\overline{BC} \cong \overline{DA}$ Prove: $\triangle ABD \cong \triangle CDB$

Complete the following two-column proofs

19) Given: $\angle ABD$ and $\angle CBD$ are right angles and \overline{BD} bisects \overline{AC} .

Prove: $\triangle ABD \cong \triangle CBD$

1. $\angle ABD$ and $\angle CBD$ are right angles 2. $m\angle ABD = 90^{\circ}$ and $m\angle CBD = 90^{\circ}$	Statement	Reasons
2. $m \angle ABD = 90^{\circ} \text{ and } m \angle CBD = 90^{\circ}$	1. $\angle ABD$ and $\angle CBD$ are right angles	
	2. $m \angle ABD = 90^{\circ}$ and $m \angle CBD = 90^{\circ}$	
$3. m \angle ABD = m \angle CBD$	3. $m \angle ABD = m \angle CBD$	
4. $\angle ABD \cong \angle CBD$	4. $\angle ABD \cong \angle CBD$	
5. $\overline{AB} \cong \overline{CB}$ Definition of a Bisector	5. $\overline{AB} \cong \overline{CB}$	Definition of a Bisector
6. $\overline{BD} \cong \overline{BD}$	6. $\overline{BD} \cong \overline{BD}$	
7. $\triangle ABD \cong \triangle CBD$	7. $\triangle ABD \cong \triangle CBD$	

20) Given: $\overline{BC} \cong \overline{DC}, \overline{AC} \cong \overline{EC}$

Prove: $\triangle ACB \cong \triangle ECD$

Statement	Reasons	

21) ΔFGH and ΔPQR are both equilateral triangles. Your friend says this means they are congruent by the SSS Postulate. Is your friend correct? Explain.

22) A student is gluing same-sized toothpicks together to make triangles. She plans to use these triangles to make a model of a bridge. Will all the triangles be congruent? Explain your answer.